Wednesday 1 March 2017

Sulphur monochloride, revisited

Sulphur monochloride is a reactive chemical used as a precursor to organosulphur compounds. Under standard conditions, it exists as the dimer disulphur dichloride (S2Cl2) which is a yellow-orange fuming liquid with an absolutely horrific smell. It is closely related to sulphur dichloride (SCl2) which is less stable and exists as a cherry red liquid.

Sulphur monochloride is made fairly simply by bubbling chlorine gas through molten sulphur. I did try making some sulphur monochloride in a previous post, however the results were far from satisfactory (link). As a warning, sulphur monochloride is a schedule 3 chemical weapons precursor due to its use in the manufacture of sulphur mustard (Cl-C2H4-S-C2H4-Cl).

Setup

To a two necked round-bottom flask, I added 48.32g of trichloroisocyanuric acid (TCCA). I attached 250ml separatory funnel to the center neck in which I (stopcock closed) poured 73ml of 31% hydrochloric acid. To the second neck of the round-bottom flask, I attached a vacuum adapter containing anhydrous calcium chloride with a stoppered end. To the vacuum inlet on the vacuum adapter, I attached one end of a PVC tube. The other end, I lead into a 1000ml conical flask containing 20g of sulphur. The final setup looked like this:



Reaction

I slowly heated the sulphur in the 1000ml flask, until it melted into a yellow-orange liquid. Then, very carefully I turned the stopcock on the separatory funnel a few degrees so the hydrochloric acid was introduced drop-wise to the flask. yellow-green chlorine gas was produced which quickly filled the flask. I allowed the chlorine to bubble through the molten sulphur in the conical flask at fairly rapid rate. As more and more chlorine was absorbed, the mixture became cherry red in colour due to the formation of sulphur chlorides.





When all the hydrochloric acid in the separatory funnel had been consumed, I allowed everything to cool to room temperature.

Workup and purification

I added the mixed sulphur chlorides to a two necked 500ml flask containing 6g of sulphur to which, I attached a liebig condenser circulated with cold water to the centre neck and a stopper to the side neck. I then refluxed this mixture for 20 minutes. The crude product is a mixture of sulphur monochloride and dichloride, refluxing with sulphur converts the dichloride to monochloride.



 After reflux, I allowed everything to cool to room temperature, then removed the condenser and attached a stillhead to the flask. I reattached the condenser to the stillhead and attached the rest of the equipment nescesery for simple distillation. The receiving flask was well sealed to the vacuum adapter to limit contact of the product with the air. I distilled off the sulphur monochloride till the distilling flask reached a state of near-dryness. I ended up with 10ml of fairly pure sulphur monochloride as a orange-red liquid.




Side note: all equipment that contacted the sulphur chlorides forms a dense coating of sulphur upon washing with water. This is very hard to clean, but hot toluene helps a lot.

C3N3O3Cl3 + 3 HCl ==> 3 Cl2 + C3N3O3H3

S8 + 8 Cl2 ==> 8 SCl2

S8 + 4 Cl2 ==> 4 S2Cl2